Minimizing submodular functions on diamonds via generalized fractional matroid matchings

نویسندگان

چکیده

In this paper we show the first polynomial-time algorithm for problem of minimizing submodular functions on product diamonds finite size. This function minimization is reduced to membership an associated polyhedron, which equivalent optimization over based ellipsoid method. The latter a generalization weighted fractional matroid matching problem. We give combinatorial by extending result Gijswijt and Pap (2013) [9].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimizing Submodular Functions on Diamonds via Generalized Fractional Matroid Matchings

In this paper we show the rst polynomial-time algorithm for the problem of minimizing submodular functions on the product of diamonds of nite size. This submodular function minimization problem is reduced to the membership problem for an associated polyhedron, which is equivalent to the optimization problem over the polyhedron, based on the ellipsoid method. The latter optimization problem is a...

متن کامل

Matchings, matroids and submodular functions

This thesis focuses on three fundamental problems in combinatorial optimization: non-bipartite matching, matroid intersection, and submodular function minimization. We develop simple, efficient, randomized algorithms for the first two problems, and prove new lower bounds for the last two problems. For the matching problem, we give an algorithm for constructing perfect or maximum cardinality mat...

متن کامل

A Note on Minimizing Submodular Functions

For a given submodular function f on a nite set V , we consider the problem of nding a nonempty and proper subsetX of V that minimizes f(X). If the function f is symmetric, then the problem can be solved by a purely combinatorial algorithm due to Queyranne (1995). This note considers a slightly more general condition than symmetry, i.e., f(X)+f (Y ) f(X Y )+f(Y X) for allX;Y V , and shows that ...

متن کامل

Towards Minimizing k-Submodular Functions

In this paper we investigate k-submodular functions. This natural family of discrete functions includes submodular and bisubmodular functions as the special cases k = 1 and k = 2 respectively. In particular we generalize the known Min-Max-Theorem for submodular and bisubmodular functions. This theorem asserts that the minimum of the (bi)submodular function can be found by solving a maximization...

متن کامل

Minimizing a sum of submodular functions

We consider the problem of minimizing a function represented as a sum of submodular terms. We assume each term allows an efficient computation of exchange capacities. This holds, for example, for terms depending on a small number of variables, or for certain cardinalitydependent terms. A naive application of submodular minimization algorithms would not exploit the existence of specialized excha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2022

ISSN: ['0095-8956', '1096-0902']

DOI: https://doi.org/10.1016/j.jctb.2022.07.005